19 research outputs found

    Quercetin elevates p27Kip1 and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1

    Get PDF
    Our previous work with primary bovine fibroblasts demonstrated that quercetin, a potent mutagen found in high levels in bracken fern (Pteridium aquilinum), arrested cells in G1 and G2/M, in correlation with p53 activation. The expression of bovine papillomavirus type 4 (BPV-4) E7 overcame this arrest and lead to the development of tumorigenic cells lines (Beniston et al., 2001). Given the possible link between papillomavirus infection, bracken fern in the diet and cancer of the upper gastrointestinal (GI) tract in humans, we investigated whether a similar situation would occur in human cells transformed by human papillomavirus type 16 (HPV-16) oncoproteins. Quercetin arrested primary human foreskin keratinocytes in G1. Arrest was linked to an elevation of the cyclin-dependent kinase inhibitor (cdki) p27Kip1. Expression of the HPV16 E6 and E7 oncoproteins in transformed cells failed to abrogate cell cycle arrest. G1 arrest in the transformed cells was also linked to an increase of p27Kip1 with a concomitant reduction of cyclin E-associated kinase activity. This elevation of p27Kip1 was due not only to increased protein half-life, but also to increased mRNA transcription

    Allelopathy of Bracken Fern (Pteridium arachnoideum): New Evidence from Green Fronds, Litter, and Soil

    Get PDF
    The neotropical bracken fern Pteridium arachnoideum (Kaulf.) Maxon. (Dennstaedtiaceae) is described as an aggressive pioneer plant species. It invades abandoned or newly burned areas and represents a management challenge at these invaded sites. Native to the Atlantic Forest and Cerrado (Tropical Savanna) Brazilian biomes, P. arachnoideum has nevertheless become very problematic in these conservation hotspots. Despite some reports suggesting a possible role of allelopathy in this plant’s dominance, until now there has been little evidence of isolated and individually identified compounds with phytotoxic activities present in its tissues or in the surrounding environment. Thus, the aim of this study was to investigate the allelopathic potential of P. arachnoideum by isolating and identifying any secondary metabolites with phytotoxic activity in its tissues, litter, and soil. Bioguided phytochemical investigation led to the isolation and identification of the proanthocyanidin selligueain A as the major secondary compound in the green fronds and litter of this fern. It is produced by P. arachnoideum in its green fronds, remains unaltered during the senescence process, and is the major secondary compound present in litter. Selligueain A showed phytotoxic activity against the selected target species sesame (Sesamum indicum) early development. In particular, the compound inhibited root and stem growth, and root metaxylem cell size but did not affect chlorophyll content. This compound can be considered as an allelochemical because it is present in the soil under P. arachnoideum patches as one of the major compounds in the soil solution. This is the first report of the presence of selligueain A in any member of the Dennstaedtiaceae family and the first time an isolated and identified allelochemical produced by members of the Pteridium species complex has been described. This evidence of selligueain A as a putative allelochemical of P. arachnoideum reinforces the role of allelopathy in the dominance processes of this plant in the areas where it occurs

    Glycophenotypic Alterations Induced by Pteridium aquilinum in Mice Gastric Mucosa: Synergistic Effect with Helicobacter pylori Infection

    Get PDF
    The bracken fern Pteridium aquilinum is a plant known to be carcinogenic to animals. Epidemiological studies have shown an association between bracken fern exposure and gastric cancer development in humans. The biological effects of exposure to this plant within the gastric carcinogenesis process are not fully understood. In the present work, effects in the gastric mucosa of mice treated with Pteridium aquilinum were evaluated, as well as molecular mechanisms underlying the synergistic role with Helicobacter pylori infection. Our results showed that exposure to Pteridium aquilinum induces histomorphological modifications including increased expression of acidic glycoconjugates in the gastric mucosa. The transcriptome analysis of gastric mucosa showed that upon exposure to Pteridium aquilinum several glycosyltransferase genes were differently expressed, including Galntl4, C1galt1 and St3gal2, that are mainly involved in the biosynthesis of simple mucin-type carbohydrate antigens. Concomitant treatment with Pteridium aquilinum and infection with Helicobacter pylori also resulted in differently expressed glycosyltransferase genes underlying the biosynthesis of terminal sialylated Lewis antigens, including Sialyl-Lewisx. These results disclose the molecular basis for the altered pattern of glycan structures observed in the mice gastric mucosa. The gene transcription alterations and the induced glycophenotypic changes observed in the gastric mucosa contribute for the understanding of the molecular mechanisms underlying the role of Pteridium aquilinum in the gastric carcinogenesis process

    De novo characterization of the gametophyte transcriptome in bracken fern, Pteridium aquilinum

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Because of their phylogenetic position and unique characteristics of their biology and life cycle, ferns represent an important lineage for studying the evolution of land plants. Large and complex genomes in ferns combined with the absence of economically important species have been a barrier to the development of genomic resources. However, high throughput sequencing technologies are now being widely applied to non-model species. We leveraged the Roche 454 GS-FLX Titanium pyrosequencing platform in sequencing the gametophyte transcriptome of bracken fern (<it>Pteridium aquilinum</it>) to develop genomic resources for evolutionary studies.</p> <p>Results</p> <p>681,722 quality and adapter trimmed reads totaling 254 Mbp were assembled <it>de novo </it>into 56,256 unique sequences (i.e. unigenes) with a mean length of 547.2 bp and a total assembly size of 30.8 Mbp with an average read-depth coverage of 7.0×. We estimate that 87% of the complete transcriptome has been sequenced and that all transcripts have been tagged. 61.8% of the unigenes had blastx hits in the NCBI nr protein database, representing 22,596 unique best hits. The longest open reading frame in 52.2% of the unigenes had positive domain matches in InterProScan searches. We assigned 46.2% of the unigenes with a GO functional annotation and 16.0% with an enzyme code annotation. Enzyme codes were used to retrieve and color KEGG pathway maps. A comparative genomics approach revealed a substantial proportion of genes expressed in bracken gametophytes to be shared across the genomes of <it>Arabidopsis</it>, <it>Selaginella </it>and <it>Physcomitrella</it>, and identified a substantial number of potentially novel fern genes. By comparing the list of <it>Arabidopsis </it>genes identified by blast with a list of gametophyte-specific <it>Arabidopsis </it>genes taken from the literature, we identified a set of potentially conserved gametophyte specific genes. We screened unigenes for repetitive sequences to identify 548 potentially-amplifiable simple sequence repeat loci and 689 expressed transposable elements.</p> <p>Conclusions</p> <p>This study is the first comprehensive transcriptome analysis for a fern and represents an important scientific resource for comparative evolutionary and functional genomics studies in land plants. We demonstrate the utility of high-throughput sequencing of a normalized cDNA library for <it>de novo </it>transcriptome characterization and gene discovery in a non-model plant.</p

    Plant spore walls as a record of long-term changes in ultraviolet-B radiation

    No full text
    Stratospheric ozone screens the Earth’s surface from harmful ultraviolet-B radiation. Concentrations of stratospheric ozone are governed by a variety of natural and anthropogenic factors, including solar cycles, volcanic aerosols, ozone-depleting substances and climate change. However, assessing this variability before instrumental records has proved difficult owing to the lack of a well-constrained proxy. Here, we use microspectroscopy to analyse the chemical composition of herbarium samples of clubmoss (Lycophyta) spores originating from high- and low-latitude localities, where they were exposed to different ultraviolet-B histories. We show that the concentration of two ultraviolet-B-absorbing compounds in the walls of high-northern- and southern-latitude spores is strongly regulated by historical variations in ultraviolet-B radiation. Conversely, we find little change in the concentration of these compounds in spores originating fromtropical Ecuador, where ultraviolet levels have remained relatively stable. Using spores from Greenland, we reconstruct past (1907–1993) changes in ozone concentration and ultraviolet-B flux; we reveal strong similarities between spore-wall reconstructions, and independent instrumental records and model results. Our findings suggest that ultraviolet-B-absorbing compounds in plant spore walls have the potential to act as a proxy for past changes in terrestrial ultraviolet-B radiation and stratospheric ozone. The chemical signature of plant spore walls in herbaria, and possibly also in sedimentary and ice-core archives, may therefore prove valuable for reconstructing past variations in stratospheric ozone and their connections with changes in solar radiation and climate
    corecore